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Abstract

This paper describes a method for recognizing partially occluded objects for bin-

picking tasks using the eigen-space analysis. Although effective in recognizing an

isolated object, as was shown by Murase and Nayar, the current method cannot be

applied to partially occluded objects that are typical in bin-picking tasks. The analy-

sis also requires that the object is centered in an image before recognition. These

limitations of the eigen-space analysis are due to the fact that the whole appearance

of an object is utilized as a template for the analysis. We propose a new method,

referred to as the “eigen-window” method, that stores multiple partial appearances

of an object in an eigen-space. Such partial appearances require a large number of

memory space. A similarity measure among windows is developed to eliminate

redundant windows and thereby reduce memory requirement. Using a pose cluster-

ing method among windows, the method determines the pose of an object and the

object type of itself. We have implemented the method and verify the validity of the

method.
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1. Introduction

Bin-picking, picking up one part from a large number of similar objects, is still one of the

most challenging problems. Some of the earlier works in this domain include: [1-5]. Despite

this long history, this bin-picking problem still provides a challenge to vision researchers.

Some of the difficulty includes: real-time requirements, difficulty in segmentation, and diffi-

culty in modeling objects.

Recently, visual learning methods [6-19] have shown a potential to solve some of these

above-mentioned problems. These methods learn object models from a series of images

taken in the same environment as in the recognition mode. Thus, this method by-passes the

difficulty in modeling. Furthermore, since such a method stores an object model as a collec-

tion of appearance parameters, recognition speed is very rapid and it can achieve the real-

time system.

The bin-picking problem requires the system to handle partial occlusion. Although power-

ful, the eigen-space analysis assumes that all the appearances are non-occlusions. In order to

apply the eigen-space analysis to recognition of partially occluded objects, we propose to

divide appearances into small windows, referred to as “eigen-windows” and to apply the

eigen-space analysis to each eigen-window [21]. The basic idea is that, even if some of the

windows are occluded, the remaining windows are still effective and can recover the object

pose. In Section 2, we review the eigen-space analysis; discuss the limitations of the eigen-

space analysis; and explain how to overcome these limitations using the eigen-window

method. Since the total number of such small windows is very large and since storing all of

them may require a prohibitive amount of memory space, we consider a method to automat-

ically select only effective windows. Section 2.4 explains the method for selecting effective

windows. Section 3 shows some of the experimental results, and Section 4 concludes this

paper.
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2. Eigen-Window Method

First, we will review the eigen-space technique and discuss the limitations of the technique

under the image shift, occlusion and noise. Then, we will introduce the new method to over-

come this problem using the eigen-window method.

2.1. Eigen-Space Technique

Let M be the number of the images in a training set. These images,  are taken

using the experimental setup as shown in Figure 1. Each image, of which dimension is

, has been converted into a column vector of the length :

 . (1)

By subtracting the average brightness of the all images, we obtain the training matrix,

 , (2)

where  is the average, and the size of the matrix is  by .

Then the covariance matrix , , is obtained as:

. (3)

This covariance matrix provides a series of eigenvalues  and eigenvectors

.

Each pair of eigenvalue and eigenvector holds:

. (4)

Namely, the  matrix can be decomposed into the  orthonormal components, of

which the eigenvalues are . Thus, each image set can be described with these eigenvec-

tors and eigenvalues.

For the sake of memory efficiency, we will ignore smaller eigenvalues and corresponding
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vectors using a threshold value, :

, (5)

where  is sufficiently smaller than original dimension .

Once we can get these eigenvectors, we can construct the eigenvector matrix

 to project an image,  (dimension ) into the eigen-space as an eigen

point,  (dimension ).

. (6)

This eigen-space analysis can drastically reduce the dimension of the images,  to the

eigen-space dimension,  while keeping several of the most effective features to recon-

struct the original images.
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2.2. Limitations of the Eigen-Space Technique

An eigen-space representation, a collection of points in the eigen-space, is very sensitive to

image conditions --- background noise, image shift, and occlusion of objects. For example,

Figure 2 shows the effect of the image shift in the eigen-space. In this figure, one of the

closed loops, denoted by “o”, depicts those points projected from a series of 128× 128pixel

images of the object in Figure 1. Another closed loop, denoted by “∗”, depicts those given

by a series of images that were shifted by 16 pixel of the same object. This figure demon-

strates that the image shift gives a significant effect on eigen-space representations. We have

also evaluated the other factors, such as occlusion and noise in the eigen-space, and verified

that each factor has a similar degree of effect on eigen-space representations.

0 deg.

180deg.

60deg.

120deg.240deg.

300deg.

Light

Object

Turn-Table

CCD
camera

Figure 1. Experimental Setup
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As an effort to reduce these disturbance effects in the eigen-space, Murase and Nayar seg-

mented only a window circumscribing the object using the movement of the object. Unfor-

tunately, however, the usual bin-picking scenario does not provide such convenient clues for

segmenting out a target region. Moreover, it often occurs that one window contains other

objects due to the cluttered environment typical in a bin-picking scenario. Thus, we need a

method to overcome these limitations.

Figure 2 Disturbance Effect in the Eigen-
space Given by Shifted Images

Original Images Shifted Images



page 10

2.3. Eigen-Window Technique

To reduce the disturbance effects, we propose to apply small windows to the original images

and to project all of them into the eigen-space. We refer to this method as the “eigen-win-

dow” technique. Figure 3 shows the overview of the technique.

2.3.1. Training Eigen-Windows

The training set of eigen-windows is given as:

(7)

where  denotes the collection of eigen-windows from the th training image; does the

eigen-window in the th training image; does the number of eigen-window in the  th

image;  is the average value. In Figure 3, the white square denotes one of the training

eigen-window.

The total number of eigen-windows in the training set is given by:

. (8)

Note that all the projected points of these eigen-windows are represented in the common

eigen-space as shown in Figure 3. Each point in the space has the label of the original eigen-

window and original training image (for example, eigen-window 1 in image 1, i.e.,  in

Figure 3).
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2.3.2. Matching Operation

From an input image, a set of sub-window images is obtained:

, (9)

such as the white window in the lower left image in Figure3.

The similarity between training eigen-window and input eigen window is evaluated using

the distance in the eigen-space. Here, the eigen-space point, , from an input eigen-win-

dow, , provides the maximum similarity to the point, , from a training eigen-win-

dow, :

. (10)

We will denote  as the corresponding training eigen-window to the input window,

and the content of  is .
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2.3.3. Voting Operation

The previous matching operation selects a set of training eigen-windows,  against input

windows. We will group this set into a group of eigen-windows so that all the eigen-win-

dows in one group have the same training image, .

(11)

(12)

We prepare a pose space for voting from the correspondences. In this operation, we consider

only the translation effect. Thus, the space is two dimensional. Here, the size of the pose

space is twice the size of the input image size, i.e., . Each pose space is prepared to

each group, .

Each pair,  and , in one group provides the positions of the input eigen-window,

, and the training eigen-window,  Then, the difference,

 is calculated.

The corresponding cell in the two-dimensional pose space to this distance gets a voting. In

order to absorb the digitization error,  cells around the center cell actually get votes

from a single correspondence. We repeat this operation using all the correspondences in the

group (all the correspondences from the same training image.)
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Although we consider only the translation --- the training set is sampled along the rotation

dimension, there is small rotation in object pose due to the sampling interval. To obtain this

small rotation and the precise translation value, the system further employes the least square

minimization using the pairs in each sub-group:

, (13)

where  and  denote the small rotation and translation, respectively.

2.4. How to Select Effective Eigen-Windows

One of the problems in the eigen-window technique is how to select the optimal set of

eigen-windows. If all the eigen-windows are utilized, 1) the number of eigen-windows

becomes very large and storing them requires a large amount of memory space, 2) due to the

similarity among eigen-windows, the matching process becomes erroneous. In this section,

we will consider the selection method. First, we shows that the local goodness, the tradi-

tional trackability criteria, can detect several appropriate corners in an image, without con-

sidering the similarity of these appearance. Then, we introduce a new global goodness

method based on the similarity measure. Finally, we can get the optimal set of eigen-win-

dows with these two methods.

2.4.1. Local Goodness: Trackability

The window selection may be considered as selecting feature points for object tracking.

Some researchers proposed to use the  matrix as the trackability measure in a win-

dow,  [20].

. (14)

This matrix , has two eigenvalues . The window is accepted as a good one, if the
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, (15)

holds, where  is a predefined threshold. This measure works well for detecting all impor-

tant corners.

Unfortunately, however, the trackability measure does not guarantee the uniqueness of the

window. In Figure 4, the window with a corner may be easy to track. However, the same

window will be confused between the upper and lower corner. Figure 5 shows the results

given by a trackability measure proposed in [20]. The left vertical edges are selected as good

windows. Certainly, the confusion occurs among these windows along the edge. Thus, we

can conclude that the trackability does provide local goodness around the feature but does

not provide a global goodness over the entire image. Next subsection will discuss this global

goodness.

min λ1 λ2,( ) λ>

λ
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Figure 4 Corner Detection with Trackability

same appearance

(b) Point Feature(a) Original Image
Figure 5 Feature Detection with Trackability
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2.4.2. Global goodness: Similarity

The global goodness of windows can be determined as the uniqueness of an eigen-window.

This uniqueness may be measured using the similarity (difference) among windows. As was

discussed in Section 2.3.2, the similarity between training and image eigen-windows was

evaluated using the distance in the eigen-space, namely,

(16)

where  denotes the norm of  using L1-norm or L2-norm. This similarity

denotes how similar these two dictionaries  and  are in the eigen-space. We can use

the same measure for evaluating the global goodness of the window, i.e., the similarity

among training eigen-windows.

The similarity, , between two training eigen windows, and , is evaluated using

the equation. If this measure is less than a certain threshold , then these two eigen-win-

dows , , are removed from the training set as shown in Figure 6.

(17)

This elimination of similar eigen-windows can make the size of a training set smaller than

the original one. This operation also makes the matching process more robust. Because the

set only contains unique eigen-windows, and the matching evaluation will not consider a

sum of random contributions from a large number of similar windows.
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Figure 7 shows an example of the similarity evaluation in eigen-space. At first, the 637

eigen-windows in Figure 5(b), are selected using the local goodness measure, the trackabil-

ity. Using the global goodness measure, the similarity in the eigen-space, the 178 eigen-win-

dows are selected in Figure 7(a). Note that most of the redundant windows such as those in

right corner edges in Figure 5(b) are eliminated in Figure 7(a). Figure 7(b) and (c) show the

points projected in the 3D eigen-space. Notice that in Figure 7(c), the distribution of projec-

tion is more uniform than that in Figure 7(b).

e

e

e

1

2

3

eigen widows
by the similarity criterion

g1

g2

similarity
S1,2

g3 gm

Figure 6 Eigen-space Distribution in 3D.
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(a) Eliminated Eigen-Windows

(b) Local Goodness Projection in
3D Eigen-space

(c) Global Goodness Projection in
3D Eigen-space

Figure 7 Eigen-Window Extract with Local Goodness Measure
and Global Goodness Measure
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3. Experimental Results

This section shows experimental results. Figure 8(a) and (b) show some kinds of the training

objects’ images and Figure 9 shows one of the input images from which the system deter-

mines poses of the objects and the types of objects itself. In order to emphasize the difficulty

in modeling, we intentionally use specular objects in this experiment.

3.1. Training Mode

In training mode, a series of images of an object is taken at 10 deg. intervals each for each

object using a rotary table and a CCD camera. The resolution of these images is

pixels and the intensity levels of images have eight bits.

Background noise is eliminated using a threshold value. Only the high intensity pixels

remain in the image. In each image, we make eigen windows only on those high intensity

pixels. We set the size of an eigen window as  pixels. Thus, the dimension of this

eigen window is 225 (  pixels), which is sufficiently smaller than the original image

dimension 15360 (  pixel). From each training image, we obtain 200 eigen windows

on average.

The eigenvectors and eigenvalues are calculated from eigen windows using equation (4).

Figure 10 shows the eigenvalues  and . This figure shows that up to the 20th dimen-

sion of the eigen-spaces are enough to recover the 80% of original image data.

We apply the global measure directly to those eigen-windows. Since specular features are

all isolated edges and points, all features are good features in trackability. We did not apply

the local measure. We eliminate redundant eigen-windows by evaluating the similarity

among them. This process can select the eigen-windows that are very different from each

other.

3.2. Run Mode

Figure 11 shows the results in run mode. Here, , depicts those eigen-windows whose

counterparts are found in the training eigen-windows. The figures in  depicts window
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positions that come from the same rotation angles. The next column depicts the voting

results in the pose space, by the calculation of . The number of votes repre-

sents the probability of the existence of the object in that rotation angle. From these voting

results, we can calculate the rotation and translation of the objects as shown in Table 1.

The final column shows the reconvention results superimposed on the original input image.

The system can identify seven bolts out of ten in the input image. In this case, the missing

bolts are not bright enough to pass the intensity threshold operation for detecting input eigen

windows.

3.3. Recognition for Various Objects

The algorithm also works well for the recognition of various objects, such as multi various

objects as shown in Figure 14. In this case, the image training set is composed of each

object’s training set as shown in Figure 13(a) and (b). Then we can obtain the recognition

result Figure 16, 17 and Table 2 with the eigen-window analysis.

Xin zini

k
 
  Xi– zi

j
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Figure 8 A Sample of Training Images. Figure 9 Multi Objects Image.

Figure 10 Eigenvalue

dimension of eigen-space.

λ

W
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140
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190

290

angle(deg.)

Figure 11 Components of the Recognition Result.
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Table 1: Position Parameters for each Objects

angle(deg.) rotation translation

90 -1 0.9809 -0.0273 -44.3796

 -0.0125  1.0223  17.1245

100 -1  1.0013  -0.0758  -12.4194

 -0.0905  1.0608  14.0588

100-2  0.4605  0.4365  -49.1039

 -0.3097  1.2900  14.8709

120-1  1.0660  -0.1010  -42.7534

 -0.0018  1.0081  4.5029

130-1  1.1684  0.0310  -60.9514

 0.1619  0.9606  -2.9618

140-1  1.0516  -0.0069  18.0010

 0.1367  0.9957  -1.9844

150-1  1.0000  -0.0000  20.0000

 -0.0000  1.0000  7.0000

190-1  0.5325  -0.2867  86.1911

 0.2337  1.1433  -8.0955

190-2  1.5127  -0.0851  -50.2733

 -0.1456  1.0785  11.2708

290-1  1.0431  -0.0423  -14.4051

 -0.1156  1.1287  -8.9405

Figure 12 Recognition Results
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Figure  13 (a) A Sample of
Training Bolt Images.

Figure 14 Multi Objects Image.

Figure 13 (b) A Sample of
Training BNC Images.

Figure 15  Eigenvalue
dimension of eigen-space.

λ

W
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angle(deg.)

Figure 16 Components of the Recognition Result.

Pose Result
PositionDeterminationζ̂ink

ẑin
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-260
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Table 2: Position Parameters for each Objects

angle(deg.) rotation translation

Bolt -0 0.9751 -0.1494 -10.3179

0.0059 1.0556 13.4182

Bolt -10 0.9427 0.0344 -21.7046

-0.0411 1.0342 18.5854

Bolt -20 0.9128 -0.0419 -47.9302

-0.0978 0.8219 9.9277

Bolt -80 1.2884 -0.3037 -34.0457

0.0142 0.9635 9.8536

Bolt -130 1.0168 0.1180 22.4607

0.0000 1.0000 16.0000

Bolt -150 0.8655 -0.0846 59.4585

-0.0112 1.0776 28.1560

Bolt -270 1.0022 0.0453 -40.1660

-0.0234 1.0555 -27.0799

Bolt -280 0.9482 0.0347 5.0386

-0.0088 1.0011 24.5654

Bolt -320 1.0000 0.0000 -54.0000

0.0000 1.0000 -29.0000

BNC -80 1.1579 -0.4820 29.8313

0.0567 1.0709 -10.3385

BNC -260 0.8135 0.1992 -3.0655

-0.0390 1.0683 -26.8598

Figure 17 Recognition Results



page 27

4. Conclusions

This paper describes a novel method, referred to as eigen-window, to extend the eigen-space

analysis to be able to recognize partially occluded objects. To reduce the redundancy among

eigen-windows, a similarity measure among eigen-windows was developed. We have

implemented the system and verified the validity of this method by experiments that involve

multiple specularity objects.

Recently, several researchers are investigating in the invariance of objects features for the

pattern matching problem. This kind of invariance allow you to recognize the object with

input images which have some object rotation and scale. In future work, we would like to

consider the invariant of the image in this eigen-window analysis.
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